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Abstract: We present a new version of our racetrack inflation scenario which, unlike our

original proposal, is based on an explicit compactification of type IIB string theory: the

Calabi-Yau manifold P4
[1,1,1,6,9]. The axion-dilaton and all complex structure moduli are

stabilized by fluxes. The remaining 2 Kähler moduli are stabilized by a nonperturbative

superpotential, which has been explicitly computed. For this model we identify situations

for which a linear combination of the axionic parts of the two Kähler moduli acts as

an inflaton. As in our previous scenario, inflation begins at a saddle point of the scalar

potential and proceeds as an eternal topological inflation. For a certain range of inflationary

parameters, we obtain the COBE-normalized spectrum of metric perturbations and an

inflationary scale of M = 3 × 1014 GeV. We discuss possible changes of parameters of

our model and argue that anthropic considerations favor those parameters that lead to a

nearly flat spectrum of inflationary perturbations, which in our case is characterized by

the spectral index ns = 0.95.
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1. Introduction

The past two years have seen continued progress in identifying how cosmological inflation

can arise from within string theory. Several interesting mechanisms have been examined so

far, including brane/antibrane inflation [1]–[7], D3/D7 brane inflation [8], DBI inflation [9],

tachyon inflation [10] and inflation driven by various kinds of closed-string moduli [11]–[14]

or more stringy degrees of freedom [15]. There is continued interest in identifying where

inflation can arise within the enormous landscape of string configurations.

The Racetrack Inflation scenario of ref. [12] gives a particularly simple scenario, based

on a Calabi-Yau compactification of type IIB string theory having only a single Kähler

modulus once fluxes are used to fix the complex-structure moduli. It was argued that

the one remaining Kähler modulus could be the inflaton provided the nonperturbative

superpotential for this modulus has a double-exponential form, known in the literature as

a racetrack model [16]. For appropriate choices of the parameters of this superpotential this

model can give rise to standard hill-top, topological slow-roll inflation. This is in contrast

with the simplest single-exponential case originally discussed in the KKLT model [17],

which does not similarly give rise to inflation.

Even though very simple and predictive, a drawback with this scenario is the absence of

an explicit string construction which produces the required racetrack superpotential. More

generally, it remains a challenge to derive inflation within an explicit string configuration for

which all of the features of the complete potential which stabilize the moduli are explicitly

calculable.
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In this paper we identify how inflation can be obtained using the low-energy field

theory which is known to describe the two Kähler moduli of the P4
[1,1,1,6,9] model, for which

Denef, Douglas and Florea were able to provide explicit evidence of the nonperturbative

superpotential [18]. The title of their paper — “Building a Better Racetrack” — explains

the title of ours. We should note, however, that although the superpotential they find is

a sum of two exponentials, it differs from the usual racetrack superpotential because each

exponential depends only on a different Kähler modulus. We find that the resulting scalar

potential can nevertheless produce inflation in a racetrack-like way: through the slow-roll

of a linear combination of the Kähler moduli axions away from a local saddle point towards

a nearby local minimum.

We describe these results in the following way. Section 2 starts with a brief summary

of the original racetrack-inflation mechanism for a single modulus, followed in section 3

by a description of its generalization to the two-modulus case of interest for the P4
[1,1,1,6,9]

type IIB vacuum. In section 4 we describe a particular choice of parameters which lead

to eternal topological inflation in this model. In section 5 we describe the derivation of

the amplitude of the spectrum of scalar metric perturbations in our model. In section 6

we discuss a relation between our parameters, the flatness of the spectrum, and the total

duration of inflation, and argue that anthropic considerations show some preferences for the

parameters leading to the flat spectrum. Our conclusions are then discussed in section 7.

2. Single-modulus Racetrack inflation

In this section we briefly review the original proposal for racetrack inflation within the

KKLT scenario [12]. This scenario is based on those vacua of type IIB string theory which

are obtained by compactifying to 4 dimensions in an N = 1 supersymmetric way on an

orientifolded Calabi-Yau manifold in the presence of three-form RR and NS fluxes and D7

branes. The presence of the fluxes can fix the values of the complex dilaton field and of

the various complex-structure moduli of the underlying Calabi-Yau space [19, 20], leading

to a low-energy 4D supergravity describing the remaining Kähler moduli which has the

no-scale form [21], for which the remaining moduli correspond to exactly flat directions of

the scalar potential.

2.1 Vacuum Solutions

Explicitly, the potential for these moduli is given by the standard N = 1 F-term potential

of N = 1 supergravity, which in Planck units reads

VF = eK
(
KīDiWDjW − 3|W |2

)
, (2.1)

with i, j running over the various complex chiral fields, ϕi. Kī denotes the inverse of the

matrix Kī = ∂i∂̄K, and the Kähler covariant derivative is DiW = ∂iW + (∂iK)W , where

K is the system’s Kähler potential and W its superpotential. For the low-energy moduli

obtained from a flux compactification typically W = W0 depends only on the axion-dilaton

and complex-structure moduli, and is therefore a constant so far as the Kähler moduli are

– 2 –
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concerned. The Kähler function for the Kähler moduli also satisfies the no-scale identity

KīKiKj = 3 , (2.2)

implying that VF = 0; hence these moduli are not fixed by the fluxes themselves.

In order to fix all moduli KKLT imagined starting with a Calabi-Yau space having

just a single Kähler modulus, the volume modulus T . For this the Kähler potential K,

obtained neglecting possible corrections in powers of α′ and the string coupling1 has been

computed to have the no-scale form [24]

K = −3 log(T + T ∗) . (2.3)

The flat direction in the T direction is lifted once W acquires a T -dependence, such as can

be generated by D3-instantons, or gaugino condensation if a suitable gauge sector exists

on one of the D7 branes.

Writing the field T in terms of its real and imaginary parts,

T ≡ X + iY , (2.4)

and using (2.1) and (2.3), the supersymmetric part of the scalar potential turns out to be

VF =
1

8X3

{
1

3

∣∣2XW ′ − 3W
∣∣2 − 3|W |2

}
, (2.5)

where ′ denotes differentiation with respect to T . The supersymmetric minima of this

potential are given by the solutions of

2XW ′ − 3W = 0 , (2.6)

for which it is clear that the value of the potential at the minimum is generically negative,

leading to vacua with 4D anti-de Sitter geometry.

KKLT obtain metastable vacua having de Sitter geometry in four dimensions by raising

the potential at this minimum to positive values by introducing anti-D3 branes. The

presence of these branes does not introduce extra translational moduli since their positions

are fixed by the fluxes [25], and so their low-energy effect is just a contribution to the

energy density of the system. Provided the antibrane tension is small — such as if they

reside at the tip of a strongly-warped throat — it represents a small perturbation to the

total energy density, and the 4D scalar potential which results is a sum of two parts

V = VF + δV . (2.7)

Here δV represents the small, explicitly nonsupersymmetric, part of the potential induced

by the tension of the anti-D3 branes.

Alternatively, this same lifting has been argued that could be obtained by turning on

magnetic fluxes on the D7 branes, and using the resulting Fayet-Iliopoulos D-term potential

1Perturbative corrections to K have been considered recently with interesting changes to the KKLT [22]

and racetrack [23] scenarios. We first neglect them here, although their inclusion is straightforward.
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to raise the value of the potential at its minimum [26] (for recent discussions on the viability

of D-term lifting see [27]), again leading to a result of the form of eq. (2.7), with δV being

the D-term part of the potential induced by the magnetic field fluxes. In either case the

form of δV is positive definite and depends on an inverse power of the overall volume of

the Calabi-Yau space,

δV =
E

Xα
. (2.8)

for constants E,α > 0. The coefficient E is proportional to the antibrane tension, T3,

gravitationally redshifted by the local value of the warp factor. The exponent is α = 2 if

δV arises from anti-D3 branes sitting at the end of a Calabi-Yau throat, or if it arises from

magnetic-field fluxes on D7 branes wrapped on cycles at the tip of such a throat. Otherwise

α = 3, corresponding to anti-D3 branes (or magnetic flux on D7 branes) situated in an

unwarped region. For anti-D3 branes the warped region is energetically preferred and so

in what follows we take α = 2.

Further progress requires specifying the T -dependence of the superpotential, for which

KKLT take the simplest form:

W = W0 +Ae−aT . (2.9)

This choice allows minima for VF at large X — as is required by the supergravity approxi-

mation to string theory — provided the fluxes are arranged to ensure that W0 is sufficiently

small. (In the limit W0 → 0 the minima disappear, leading instead to a runaway potential.)

The analysis also goes through for more complicated possibilities for W , however, such as

if W were given by modular functions as would be expected for N = 2∗ models [28], or if

it involved the sum of two exponentials [12]

W = W0 +Ae−aT +B e−bT . (2.10)

This last superpotential includes the original KKLT scenario if AB = 0 (or a = b) and

has the property that it can naturally provide minima for VF which lie in the large-field

region. (When W0 = 0 the superpotential of eq. (2.10) reduces to the standard racetrack

form, which was studied in the past as a superpotential which could stabilize the dilaton

field at weak coupling for heterotic string vacua [16].) Such a superpotential arises when

gauginos condense for a supersymmetric gauge theory (with no charged matter) involving

a product gauge group. For instance, the gauge group SU(N) × SU(M) leads to a sum of

exponentials with both A and B nonzero, while a = 2π/N and b = 2π/M [29]. Minima at

large X are then generic for large values of N and M , with M close to N .

In terms of the real component fields the supersymmetric part of the potential obtained

using the superpotential (2.10) takes the following form (for real W0):

VF =
e−(a+b)X

6X2

{
aA2 (aX + 3) e(b−a)X + bB2 (bX + 3) e−(b−a)X

+AB (2abX + 3a+ 3b) cos[(a− b)Y ] (2.11)

+3W0

(
aAebX cos[aY ] + bBeaX cos[bY ]

)}

The scalar potential obtained by summing this with δV = E/Xα has several de Sitter

minima, depending on the values of the parameters A, a,B, b,W0 and E. In general the
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different periodicities of the Y -dependent terms lead to a very rich landscape of vacua [28,

30]. This is particularly so if a − b is taken to be very small (as is done for the standard

racetrack models), such as if we take a = 2π/M and b = 2π/N with integers N ∼ M and

both large.

The pattern of vacua obtained using (2.10) differs from that found with the original

KKLT scenario in that it allows nontrivial minima even when W0 = 0. For W0 6= 0, many

new local minima appear due to the small periodicity of the terms proportional to W0 in

the scalar potential. By choosing the background fluxes appropriately we have the freedom

to adjust the values of W0 and E. In particular E can be tuned, as in KKLT, to adjust the

value of the potential at its minimum. Unlike for the KKLT case, these parameters can

also be adjusted to arrange the existence of local minima which are both supersymmetric

and flat in four dimensions [30].

2.2 Inflationary Slow Roll

Another important difference between the superpotentials (2.9) and (2.10) is seen once

one examines the dynamics of the field T as it rolls towards these vacua. In particular,

for inflationary purposes our interest is in slow rolls, for which the scalar-field energy is

dominated by its potential rather than its kinetic energy. The main point of ref. [12]

was that such slow rolls can exist for the superpotential (2.10), even though they do not

for (2.9).

A sufficient condition for the occurrence of an inflationary slow roll is ε, |η| ¿ 1, where

ε and η are the slow-roll parameters [31], suitably generalized [6, 32] for scalars having

nonminimal kinetic terms, Lkin = −1
2 gab(φ)∂µφ

a∂µφb. Explicitly, these are

ε =
1

2

(
gab ∂aV ∂bV

V 2

)
(2.12)

while η is defined as the most-negative eigenvalue of the matrix

Na
b =

[
gac(∂c∂bV − Γdcb∂dV )

V

]
, (2.13)

These definitions assume Planck units, and in them the indices ‘a, b, c, d’ run over a complete

basis of fields, φa. The connection, Γdcb(φ), appearing in η is constructed in the usual way

from the target-space metric, gab(φ), which is in turn defined by the scalar-field kinetic

terms. The point behind these definitions is their invariance under redefinitions of the

scalar fields, and their reduction to the standard ones when evaluated for fields with minimal

kinetic terms.

Notice also that the complications in η having to do with the connection Γabc are

irrelevant when specialized to points for which ε vanishes.

The above expressions simplify when expressed in a complex field basis {φa} = {ϕi, ϕ̄},
for which the target-space metric has components gij = gı̄̄ = 0 and gī = gı̄j = ∂i∂̄K.

In this case the only nonzero connection components are Γijk = Kin̄∂j∂k∂n̄K and their

complex conjugates. The above definitions then reduce to

ε =

(
Kī ∂iV ∂̄V

V 2

)
(2.14)
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and

Na
b =

(
N i

j N
i
̄

N ı̄
j N

ı̄
̄

)
, (2.15)

where

N i
k =

Kī∂̄∂kV

V
, Nk

ı̄ =
Kk̄(∂ı̄∂̄V −K ln̄∂ı̄∂̄∂lK ∂n̄V )

V
, (2.16)

and N ı̄
̄ and N k̄

i are obtained from these by complex conjugation.

Usually a fine tuning of some of the parameters of the model are required in order to

ensure that both ε and |η| are sufficiently small. For instance for the superpotential (2.10)

it was found in [12] that the potential has a saddle point (for which ε = 0) near a flat local

minimum, but a tuning of the order of 1 part in 1000 was needed, in some of the parameters

of the model, in order for |η| to be small enough to obtain the minimal 60 e-foldings of

inflation ( See [12] for details.).

Once an inflationary region is obtained, the observed size of the CMB temperature

fluctuations may be obtained by adjusting the string scale, typically leading to a value

close to the GUT scale. The consistency of this with the observed value of Newton’s con-

stant then implies a condition on the VEV of the volume modulus that determines the

string scale from the Planck scale. Even though this procedure looks (and is) quite restric-

tive, solutions nonetheless exist having acceptable values for all of these experimentally

measurable quantities. In refs. [6, 12] the scaling properties of the low-energy action were

exploited in finding values of the parameters which satisfied all of these criteria.

3. The orientifold of P4
[1,1,1,6,9]

We now return to the main line of development, and repeat the above steps for the orien-

tifold of degree 18 hypersurface P4
[1,1,1,6,9], an elliptically fibered Calabi-Yau over P2. The

stabilization of moduli in this model was performed in [18] where it was also shown how D3

instantons generate a nonperturbative superpotential, thus providing an explicit realization

of the KKLT scenario.2

The model is a Calabi-Yau threefold with the number of Kähler moduli h1,1 = 2 and

the number of complex structure moduli h2,1 = 272. The 272 parameter prepotential for

this model is not known. We will restrict ourselves to the slice of the complex structure

moduli space which is fixed under the action of the discrete symmetry Γ ≡ Z6 × Z18.

This allows to reduce the moduli space of the complex Calabi-Yau structures to just 2

parameters, since the slice is two-dimensional. This restricted model has a long string

pedigree, starting with [33]; it is a hypersurface in the weighted projective space P4
[1,1,1,6,9].

The remaining 270 moduli are required to vanish to support this symmetry. The defining

2Furthermore, this model has been used as the prototype for a general class of models in which the

α′ corrections to the Kähler potential give rise to exponentially large volume compactifications [22]. For

simplicity we restrict ourselves here to the leading-order potential, and argue that our analysis can easily

be extended to the exponentially large volume case since in the end it is the axionic field that plays the

role of the inflaton and not the volume. We nevertheless verified that, in the range of parameters that we

are working on, the α′ corrections do not affect the results substantially and can be safely ignored.

– 6 –
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equation for the Calabi-Yau 2-parameter subspace of the total moduli space is

f = x18
1 + x18

2 + x18
3 + x3

4 + x2
5 − 18ψx1x2x3x4x5 − 3φx6

1x
6
2x

6
3 . (3.1)

The first stage of the GKP-KKLT scenario [19, 17], stabilization of the type IIB axion-

dilaton τ and the two complex structure moduli ψ and φ in eq. (3.1) was performed in [18]

explicitly. It was important at this stage to turn on only the fluxes on Γ-invariant cycles,

the same tool has been used in other models of flux vacua stabilization in [34].

The Kähler geometry of the remaining two Kähler moduli h1,1 = 2 was specified

in [33, 18]. We denote them by τ1,2 = X1,2 + iY1,2. These moduli correspond geometrically

to the complexified volumes of the divisors (or four-cycles) D4 and D5, and give rise to the

gauge couplings for the field theories on the D7 branes which wrap these cycles. For this

manifold the Kähler potential is given by

K = −2 lnR , (3.2)

where R denotes the volume of the underlying Calabi-Yau space, given in terms of the two

Kähler moduli by

R =

√
2

18

(
X2

3/2 −X1
3/2
)
. (3.3)

As is easily verified, this Kähler potential satisfies the identity K īKiK̄ = 3, and so

is of the no-scale type, showing that both τ1 and τ2 represent flat directions so long as

the superpotential does not depend on them (as is true in particular for the Gukov-Vafa-

Witten superpotential [35] for these fields). These flat directions are lifted by D3 instantons

or gaugino condensates, which have been shown to give a non-vanishing effect for this

manifold [18] to generate the following nonperturbative superpotential:

W = W0 +Ae−aτ1 +B e−bτ2 . (3.4)

This form is similar to the racetrack models inasmuch as it involves two exponential terms,

but differs in that each exponential depends only on one of the two complex Kähler moduli.

Given these expressions for K and W , the supersymmetric part of the scalar potential

takes the following form:

VF = 108
(X2

3/2−X1
3/2)2

{
4(X1X2)1/2|X1/2

2 Wτ1 +X
1/2
1 Wτ2 |2

−3X1(Wτ1
∗W +Wτ1W

∗)− 3X2(Wτ2
∗W +W ∗Wτ2)

+2|X1Wτ1 +X2Wτ2 |2
}
, (3.5)

which gives the following function of Xi and Yi:

VF = 216
(X2

3/2−X1
3/2)2

{
B2b(bX2

2 + 2bX1
3/2X2

1/2 + 3X2)e−2bX2

+A2a(3X1 + 2aX2
3/2X1

1/2 + aX2
1 )e−2aX1

+3BbW0X2e
−bX2 cos(bY2) + 3AaW0X1e

−aX1 cos(aY1)

+3ABe−aX1−bX2(aX1 + bX2 + 2abX1X2) cos(−aY1 + bY2))
}

(3.6)

Notice that this potential is parity invariant, (Xi, Yi) → (Xi,−Yi), with Yi being pseu-

doscalars. It is also invariant under the two discrete shifts, Y1 → Y1 + 2πm1/a and

Y2 → Y2 + 2πm2/b, where the mi are arbitrary integers. Notice also the approximate

– 7 –
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UR(1) R-symmetry, aδY1 = bδY2 = ε, which becomes exact in the limit W0 → 0. Since the

Yi only enter the full potential through VF , these fields may be fixed without reference to

the nonsupersymmetric part of the potential, δV . If a, b, A,B and W0 are all positive (as we

assume for simplicity) then inspection of eq. (3.6) shows that for fixed Xi > 0, the poten-

tial VF would be smallest if we could choose cos(aY1) = cos(bY2) = cos(−aY1 + bY2) = −1

(or maximized by choosing them equal to +1). But this cannot be done since these three

conditions are mutually incompatible. For small W0, the case of interest in what follows,

it is energetically preferable to have cos(−aY1 + bY2) = −1, leading to

aY1 − bY2 = π (mod 2π) , (3.7)

and to allow cos(aY1) and/or cos(bY2) to be larger than −1. For instance, if we follow

Douglas et. al. [18] by making the choices A = B = 1, a = 2π/4 and b = 2π/30 then

because a > b the minima prefer cos(bY2) = cos(−aY1 + bY2) = −1, corresponding to

the following lattice of degenerate minima: (Y1, Y2) = (4m1, 30m2 − 15), with m1 and m2

integers.

We find numerically that using these values for Yi in VF leads to a unique minimum for

(X1, X2). The precise position of this minimum varies with the parameters A,B, a, b and

W0, and in particular the minimum is shifted to arbitrarily large values of Xi as W0 → 0.

The potential VF is negative when evaluated at this minimum, but it can be made positive

once we add the anti-D3 branes à la KKLT. For this purpose we take δV = E/R2 if

warping is not important at the anti-D3 position, or δV = E/R4/3 if warping is important.

In both cases E is a positive constant, as in previous sections. For our subsequent numerical

purposes we use the unwarped case in what follows, and write the lifting term as

δV =
D

(
X

3/2
2 −X3/2

1

)2 (3.8)

4. Inflationary parameters and slow roll

We next ask whether slow-roll evolution is possible with this superpotential and Kähler

potential. We are guaranteed the existence of saddle points for which ε = 0 because of the

existence of periodic minima in the (Y1, Y2) plane. For instance, when a À b — like for

the parameters chosen in ref. [18] — we found above that the minima correspond to the

choices aY1 = 0 (mod 2π) and bY2 = π (mod 2π). Saddle points are then found midway

in between, such as for aY1 = bY2 = π (mod 2π). The question is whether the parameters

a, b, A,B and W0 can be chosen to ensure |η| is small enough at these points.

Numerically, we find the following results. For small W0 the minimum discussed above

exists for large X1,2, corresponding to large volume R. Fixing the Xi fields at their par-

ticular values of the global minimum of the potential, we can find an infinite number of

maxima and minima obtained from one another by shifts in the two Yi directions. There

are saddle points in between these minima, at (aY1, bY2) = (π + 2πn, π + 2πn), whose un-

stable directions lie purely within the (Y1, Y2) subspace of the four possible field directions.

Since these are purely axionic directions, the inflation we obtain resembles in some ways

– 8 –
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the natural inflation mechanism [36]. However, the scalar potential and the field evolution

during inflation in our model differ significantly from their counterparts in the natural

inflation scenario.

Because of the approximate UR(1) symmetry which appears in the limit W0 → 0, the

flatness of the potential at these saddle points turns out to depend sensitively on the value

of W0. For W0 = 0 one of the Yi directions would be perfectly flat, corresponding to the

direction aY1 ∝ bY2 which is the Goldstone boson for this symmetry. This can be seen by

expanding the potential near a saddle point, aY1 = π + y1, bY2 = π + y2:

V ∼ f(X1, X2) + AaW0 X1 e
−aX1y1

2 + B bW0 X2 e
−bX2y2

2

− AB e−aX1−bX2 (aX1 + bX2 + 2 abX1 X2) (y1 − y2)2 (4.1)

However, for A,B > 0, the direction orthogonal to y1 = y2 is unstable, so W0 → 0 is not the

tuning needed to get a nearly flat saddle point. Rather we need to tune the W0-dependent

terms against those which are independent of W0. Moreover, unlike the single-modulus case

of the previous section (but similar to KKLT), in the limit W0 = 0 there is no minimum

in the X1,2 directions. Both of these considerations show that the optimal value of W0

is nonzero. For fixed values of a, b, A,B (and adjusting D so as to keep the final vacuum

energy zero), the saddle point at (aY1, bY2) = (π, π) becomes increasingly flat as W0 is

increased, up to some critical value Wc beyond which it is no longer a saddle point, but

becomes a shallow local minimum.

Searching the parameter space, we are able to find choices for which the scalar potential

behaves similarly to the original racetrack inflation potential. Starting at the saddle point,

since only one of the four real directions is unstable, we have sufficient freedom to make

this direction flat enough to give rise to successful inflation. The technical details are more

complicated in this case than for the original racetrack model, as we now show.

Our goal was to find a set of parameters which would lead to inflation satisfying the

COBE normalization of power spectrum,

P (k0) = 4× 10−10 (4.2)

at the scale k0/(a0H0) = 7.5. If there are Ne e-foldings of inflation after horizon crossing,

this corresponds to ∆N = Ne− ln(7.5) = Ne− 2 e-foldings before the end of inflation. We

also need to have the spectrum to be sufficiently flat, ns = 0.95 ± 0.02 [37].

After some searching of parameter space, we found a few examples which satisfy these

criteria. These examples are not particularly easy to find. The example with P (k0) =

4 × 10−10 and ns = 0.95, on which we focus for the rest of the paper, has the following

parameters:

W0 = 5.22666 × 10−6, A = 0.56, B = 7.46666 × 10−5, a = 2π/40, b = 2π/258,

D = 6.21019 × 10−9 (4.3)

whereW0 is chosen to be close to the critical value mentioned above; hence these are optimal

values for getting a long period of inflation and a flat spectrum of density perturbations.
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Figure 1: The potential as a function of the

axion variables Y1, Y2 at the minimum of the

radial variables X1, X2, in units 10−15 of the

Planck density.

Figure 2: The potential as a function of the

radial variables X1, X2 at the minimum of

the angular variables Y1, Y2, in units 10−14

of the Planck density.

The choice of parameters W0, A, a and D in eq. (4.3) is quite reasonable from the point

of view of already available stringy construction in [18]. The situation is more tense for our

choice of B and b. It may be difficult to get such a small value of B but taking into account

of the fact that the value of B depends on the stabilization point for complex structure

moduli, it does not seem to be impossible. On the other hand, to find explicit stringy

constructions with a large value of the inverse of b may require special effort. Since we take

care that the volume of stabilization with such parameters is still large in stringy units,

we conclude that the full set of parameters in eq. (3.6) is possible in principle, however,

the extreme values of B and b may need a better justification in more general explicit

constructions.

With these choices of the parameters the minimum described above is located at

X1 = 98.75839 X2 = 171.06117 Y1 = 0 Y2 = 129 , (4.4)

corresponding to a volume R = 99 in string units, which is large enough to trust the

effective field theory treatment we use. The parameter D is tuned so that the potential

vanishes at this minimum.

It is very difficult to plot the potential since it is a function of 4 variables. Here we

will only show the behavior of this potential as a function of the axion variables Y1, Y2 at

the minimum of the radial variables X1, X2, and the potential as a function of the radial

variables X1, X2 at the minimum of the angular variables Y1, Y2. Figures 1 and 2 illustrate

the behavior of the potential near the minimum (4.4).

We have checked that the eigenvalues of the Hessian (mass2) matrix are all positive,

verifying that it is indeed a local minimum. The value of the masses for the moduli at this

minimum turn out to be of order 10−6 − 10−7 in Planck units.

Inflation occurs near the saddle point located at

X1 = 108.96194 X2 = 217.68875 Y1 = 20 Y2 = 129 . (4.5)
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At this point the mass matrix has three positive eigenvalues and one negative one in

the direction of (δX1, δX2, δY1, δY2) = (0, 0,−0.6546, 0.7560), corresponding to a purely

axion direction. This is the initial direction of the slow roll away from the saddle point

towards the nontrivial minimum described above.

The value of the effective poten-

-0.4 -0.2 0 0.2 0.4
φ

0

1e-23

2e-23

3e-23

4e-23

∆V

Figure 3: A cross section of the change in the po-

tential near the saddle point, along the tangent to

the initial unstable direction, in units of the Planck

density.

tial at the saddle point is V ∼ 3.35 ×
10−16 = M4 in Planck units, so that

the scale of inflation is M = 3.25 ×
1014 GeV. This is a rather small scale.

The ratio of tensor to scalar perturba-

tions in this scenario is very small, r ¿
1, so the gravitational waves produced

in this scenario will be very hard to ob-

serve [38]. We plot the shape of the

potential along the initial unstable di-

rection, (Y1, Y2) = (−0.6546, 0.7560)φ

in figure 3. (The zero of the y-axis is

not the true minimum of the potential

since the real inflaton trajectory curves

away from the initial tangent to the tra-

jectory.)

To find the slow roll parameter η at the saddle point (recall that ε = 0 automatically

at a saddle point), as well as to compute the inflationary trajectories, we must also specify

the kinetic terms for the fields. The general supergravity expression is given in terms of

derivatives with respect to the Kähler potential,

Lkin =
∂2K

∂φ∗i ∂φj
∂µφ

∗
i ∂
µφj (4.6)

Explicitly, we find

Lkin =
3

8
(
X

3/2
1 −X3/2

2

)2

(
2X

3/2
1 +X

3/2
2√

X1

(
∂X2

1 + ∂Y 2
1

)

− 6
√
X1X2 (∂X1∂X2 + ∂Y1∂Y2) +

X
3/2
1 + 2X

3/2
2√

X2
(∂X2

2 + ∂Y 2
2 )

)
(4.7)

The noncanonical kinetic terms require the use of the generalized definitions of the

slow-roll parameters defined earlier. Alternatively, because the initial roll is purely in the

(Y1, Y2) plane we can instead choose to diagonalize the kinetic terms for the Yi fields in

the approximation that the Xi’s are constants. This diagonalization is straightforward but

cumbersome, and leads to the value

η = −0.01 (4.8)

at the saddle point. As we will discuss below, this leads to ns ≈ 0.95 and a long period of

inflation, 980 e-foldings after the end of eternal inflation.
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Figure 4: Evolution of the axionic fields

Y1, Y2 during inflation. Inset shows oscilla-

tions around the minimum at the end of in-

flation.

Figure 5: Evolution of the X1, X2 direc-

tions during the inflationary period. Note

that even though the potential at the mini-

mum is only protected by a small barrier, our

numerical evolutions shows that the fields do

relax to this minimum evading a potential

overshooting problem.

5. Normalization of spectrum and scale of inflation

We have computed the power spectrum for the model under consideration by first nu-

merically evolving the full set of field equations, which can be efficiently written in the

form

dφi
dN

=
1

H
φ̇i(πi)

dπi
dN

= −3πi −
1

H

∂

∂φi
(V (φi)−Lkin) (5.1)

where N is the number of e-foldings starting from the beginning of inflation, πi = ∂Lkin/∂φ̇i
are the canonical momenta, and the time derivatives φ̇i are regarded as functions of πi,

which can conveniently be solved for using symbolic manipulation. (This procedure allevi-

ates the need for computing Christoffel symbols in field space, or explicitly diagonalizing

the kinetic term. However we have also checked our results by directly integrating the

second order equations for Xi, Yi in Mathematica.) We use initial conditions where the

field starts from rest along the unstable direction, close enough to the saddle point to give

more than 60 e-foldings of inflation. In fact our starting point corresponds to the boundary

of the eternally inflating region around the saddle point where the field is dominated by

quantum fluctuations [39] 3. An example of the inflationary trajectories for all the fields is

shown in figures 4), (5.

3This realization of eternal inflation was also used in [12, 13] to argue that the standard overshoot

problem of string cosmology [40] is ameliorated. In [13] it was further argued that this set-up relaxes the

late-thermal roll problem in which temperature corrections to the effective potential may destabilize the

vacuum [41].
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To compute the spectrum of adiabatic scalar density perturbations, we use the effective

one-field approximation, namely that the power is given by

P (k) =
1

50π2

H4

Lkin
(5.2)

evaluated at horizon crossing, k/a = H. Equivalently, we can parametrize P as a function

of the number of e-foldings of inflation.

If we assume that the reheat temperature is of the same order as the scale of inflation,

Tr ∼M = 3.25 × 1014 GeV, the number of e-foldings of inflation since horizon crossing is

Ne = 53 + ln(M/1013 GeV) ≈ 56.5 (5.3)

and the COBE normalization scale is at ∆N = Ne−ln(k0/(aH0)) = Ne−ln(7.5) = Ne−2 ∼
55 e-foldings before the end of inflation. If Tr < M , then Ne is reduced by the amount
1
3 ln(M/Tr). For example, one might like to satisfy the gravitino bound Tr < 1010 GeV,

which decreases Ne to 53. The running of the spectral index (which will be studied in the

next section) is sufficiently small that this changes the value of ns only by −0.003, thus

our results do not depend sensitively on assumptions about the reheating temperature.

Our numerical analysis shows that the amplitude of density perturbations for the

parameters given above does satisfy the COBE normalization of the power spectrum,

P (k0) = 4× 10−10 (5.4)

at the COBE normalization scale.

6. Power spectrum, dependence on W0, and anthropic considerations

The choice of the parameters leading to P (k0) = 4× 10−10 is not unique. First of all, just

as in the Racetrack scenario [12], there is a rescaling of parameters

(a, b)→ λ−1 (a, b),
(
A,B,W0, D

1/2
)
→ λ3/2

(
A,B,W0, D

1/2
)
, (Xi, Yi)→ λ (Xi, Yi)

(6.1)

This transformation does not alter inflationary dynamics or the height of the potential;

it rescales the fields, but leaves the slow-roll parameters and the amplitude of density

perturbations invariant. If a set of parameters gives rise to slow-roll inflation in a region

of field space, the transformed parameters will also yield inflation with the same spectrum

of density fluctuations, in the transformed region of field space.

A less trivial change occurs if we keep a, b,Xi, Yi invariant and rescale W0, A,B by

µ−3/2 each and D by µ−3. This transformation rescales the potential V and the amplitude

of density perturbations P as µ3 without altering the values of the fields, the slow roll

parameters, or the total duration of inflation.

It would be interesting to compare different sets of parameters related to each other by

the µ-transformation and find which of these parameters are more probable in the stringy

landscape, which ones lead to the greater volume for the inflationary universe and more
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efficient reheating, etc. This would allow us to determine the most probable amplitude

of density perturbations in this class of theories, see e.g. [42] for a discussion of closely

related issues. This is a complicated problem which goes beyond the scope of the present

investigation. We still do not know what is the proper choice for the probability measure

in eternal inflation. In addition, it is not obvious whether a simultaneous scaling of several

different parameters which have different origin can be easily achieved within the full string

theory landscape.

Therefore we may instead pursue a more modest goal and study what happens when

we change just one of the parameters, e.g., W0. Let us recall the arguments concerning

the distribution of flux vacua in string theory with a given value of W0, [43, 44]. This

distribution is believed to be uniform near zero. This means that if one wants |W0| ≤ ε,

the fraction of flux vacua that may provide this value is of the order ε2. Keeping in mind

an enormously large number of flux vacua we deduce that any value of W0 which we may

need for cosmology is available, at least in principle, in some explicit constructions, in

particular in the “better racetrack” model. To obtain the particular value which we need

would require an intensive numerical search, by varying sets of stabilizing fluxes, and this

is not guaranteed to be a computable problem in a reasonable amount of time [45]. It

is therefore satisfying to know that at least in principle, the value of W0 which we need

in our model for cosmology is possible. Particularly, we may relax the restriction to the

2-parameter model defined in eq. (3.1) and engage all 272 complex structure moduli of the

full model, which admits a huge number of possible fluxes. In this way we expect that

eventually any required value of W0 can be achieved constructively.

Since inflation in our scenario requires fine tuning, it is not surprising that a change

of W0 by several percent can spoil inflation. We have found, for example, that when one

decreases W0 from 5.227 × 10−6 to 5.147 × 10−6, i.e. by 1.5%, the height of the saddle

point and the amplitude of perturbations change insignificantly, while ns decreases to 0.92,

which is at the verge of being ruled out by observations.

We have evaluated the scalar spectral index, ns = d lnP/d ln k at two different points

along the inflationary trajectory: at the beginning, when the fields are near the saddle

point, and at 50 e-foldings before the end of inflation, near the COBE normalization point.

We carried this out for a range of W0 values around our fiducial value W0 = 5.227× 10−6,

going up to the critical value Wc = 5.267 × 10−6, beyond which the saddle point becomes

a local minimum. The results are shown in figure 6.

Evaluating the spectral index at 55 e-foldings before the end of inflation gives the

spectral properties relevant for the CMB. Figure 6 shows that for W0 = 5.227 × 10−6 the

spectral index reaches its largest value

ns ≈ 0.95 (6.2)

This is the same value which we found in the original racetrack model. The figure shows that

W0 has to be tuned at the level of a percent to keep the spectral index from decreasing into

a range of phenomenologically disfavored values. The comparison between the model of this

paper and the original single-Kähler modulus racetrack model is shown in figure 7, where

we chose the endpoint of inflation to coincide for the two models, for ease of comparison.
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Figure 6: Spectral index at the saddle point

and at the COBE scale, as a function of W0

divided by its optimal value, with other pa-

rameters (except D) held fixed.

Figure 7: Spectral index as a function of the

number of e-foldings of inflation (minus the

total number of e-foldings), for the original

racetrack model, and the two-Kähler modu-

lus model of this paper.

The figure plots the spectral index as a function the number of e-foldings, minus the total

number of e-foldings, showing that the spectral properties of the two models are remarkably

similar.

During most of inflation, the parameter ns remains nearly constant, at its value near

the saddle point, shown in figure (6). Only during the latter part of its evolution does it

move toward the smaller values which apply at horizon crossing. Since lnk ∼ N during

inflation, the power grows in the past like P ∼ e(ns−1)N to some approximation, where ns
is evaluated at the saddle point. Knowing that P (k0) = 4× 10−10 at the COBE point, we

can thus roughly estimate the number of e-foldings Nb from the end of the stage of eternal

inflation, where P = O(1), to the COBE point, where P (k0) ∼ 4× 10−10:

Nb ∼
ln(4× 10−10)

ns − 1
=

C

1− ns
, (6.3)

with C ≈ 20. In the model with W0 = 5.227×10−6 one has 1−ns ≈ 0.022 during the main

part of inflation (much earlier than horizon crossing), which gives Nb ≈ 980, in reasonable

agreement with the actual value of 920 obtained numerically. (Note, however, that even

though ns = 0.98 near the saddle point, its value at the COBE scale is ns = 0.95.). On

the other hand, eq. (6.3) suggests that there will be a smaller number of e-foldings as we

decrease the value of ns. In fact, we have proved explicitly that this is indeed what happens

in our model. Solving the equations of motion numerically we found that the number of

e-folds after eternal inflation for the case with ns = 0.92 gives us 300 e-folds instead of the

920 of the ns = 0.95 case.

This means that the total volume of the universe after eternal inflation grows addi-

tionally by the factor of

e3Nb ∼ exp

(
3C

1− ns

)
. (6.4)

One could arrive at a similar conclusion by investigating the total growth of the universe

for inflation which begins when the field was at a given distance from the saddle point.
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The meaning of this result is very simple: The small value of 1−ns correspond to small

values of the slow-roll parameters. One may argue that in this case eternal inflation near

the saddle point becomes more efficient (“longer eternity”). In addition to it, the normal

inflationary regime becomes longer, the growth of the volume of the universe is proportional

to exp
(

3C
1−ns

)
, and therefore the total volume of the universe will be dominated by the

regions with the smallest possible values of 1− ns.
This argument has a following interesting implication, which seems quite plausible: If

one assumes that the probability to live in a given part of the universe is proportional to

its volume, this assumption singles out those parameters which lead to ns as close to 1 as

possible. In this sense, one may argue that the value W0 = 5.227 × 10−6, which gives the

largest value of ns in our model (all other parameters being fixed), is determined not by

fine-tuning but by anthropic considerations: The parts of the universe with a flat spectrum

of perturbations tend to have larger volume; the flatter the better.

7. Discussion

We have seen that the superpotential and Kähler potential which have been computed for

compactifications to four dimensions on the orbifolded Calabi-Yau manifold, P4
[1,1,1,6,9], is

rich enough to allow inflationary regimes to occur. These inflationary regimes resemble

those of the original racetrack scenario inasmuch as they correspond to regions where |η|
is arranged to be small at a saddle point which lies between two degenerate minima. We

have found slow-roll inflation is possible for particular choices of parameters. It would be

interesting to further explore the parameter space of this model and look for values which

are easier to obtain from explicit string constructions.

In the KKLT model, with the superpotential containing only one exponent for the

volume modulus, one could not have inflation without adding moving branes. In our

original racetrack inflation scenario [12] we were able to find the first working inflationary

model without adding any new branes to the KKLT vacuum stabilization scenario. In the

present work we have made a new step and achieved inflation in a theory with two moduli

fields, without introducing the standard racetrack potentials with two exponential terms

for each of them. This suggests that by increasing the number of moduli fields, inflation

may be easier to achieve. Actually, in ref. [14] inflation is generically achieved in models

with more than two Kähler moduli, but the inflaton in those models is the real part of

a Kähler modulus rather than its axionic component. A similar observation was made in

ref. [46] in a different context.

The properties of the resulting density fluctuations in our model can be computed in

the usual way in terms of the slow-roll parameters, leading to inflationary phenomenology

which resembles in many ways that of the original racetrack inflation model. Depending on

the choice of parameters for the improved racetrack, one can obtain spectra with different

values of the spectral index ns. We find it interesting that the volume of the universe

becomes exponentially larger for the models with the smallest deviation of ns from unity.

For the full range of inflationary parameters that we were able to find, the largest value of
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ns, corresponding to the largest volume of the universe, is ns ≈ 0.95, which is in a good

agreement with the latest observational data [37].

Finally, we would like to comment on the non-Gaussianity of the metric perturbations

in our model. As should be clear from the discussion above, the model we are presenting can

be recast as a single field inflation, once the trajectory in field space is obtained numerically.

Based on this realization one would expect the non-Gaussianity in our model to be very

small, and we checked numerically that this is indeed the case.4
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